Distribuição Das Autocorrelações Em Modelos De Séries Temporais Em Movimento Verticais Autorregressivos
O que está incluído nesta pesquisa Todas as coleções - Procure todas as coleções listadas abaixo de uma só vez. Relatórios técnicos - Relatórios científicos e técnicos (SampT) que transmitem os resultados dos esforços de pesquisa, desenvolvimento, teste e avaliação patrocinados pela Defesa (RDTampE) em uma ampla gama de tópicos. A coleção inclui citações e muitos documentos de texto completo, baixáveis, desde meados dos anos 1900 até o presente. AULIMP - Air University Library Index to Military Periodicals. Índice de sujeito a artigos importantes, novidades e editoriais de periódicos militares e aeronáuticos, com citações de 1988 a presente. BRD - Biomedical Research Database. Desenvolvido a partir de programas de pesquisa, testes e treinamento financiados pelo governo federal, atualizados anualmente. Dados do Orçamento do Congresso (CBD) - Dados do Orçamento do Congresso Fornece capacidades detalhadas de pesquisa e análise em todos os departamentos e agências militares para dados de Teste e Avaliação de Pesquisa (RDTampE). DTICs As versões de folha de cálculo de PDF e Excel dos relatórios do orçamento do Congresso estão disponíveis pouco depois de publicar no site Thomas (Biblioteca do Congresso). DoD Labs e SampT - Permite aos usuários consultar a comunidade de laboratórios DoD ou outros sites identificados como relacionados às organizações SampT. DTIC Online - Esta pesquisa consulta o site público DTIC Online Public. NDIA - Defesa Nacional da Defesa da Associação Industrial. Coleção de apresentações de conferências patrocinadas pela NDIA. RDDS - R-2 fornecem informações narrativas sobre programas de Pesquisa, Desenvolvimento, Teste e Avaliação (RDTampE) e Elementos do Programa (Números PE) no Departamento de Defesa (DoD). SCAMPI - College College Automated Military Periodical Index. Base de dados de artigos sobre ciência militar e naval, guerra operacional, planejamento conjunto, políticas nacionais e internacionais e outras áreas pesquisadas pelo Joint Forces Staff College de 1985 a presente. WHS - Serviço da sede da Washington. Emissões do Departamento de Defesa (DoD) (atuais e canceladas), funcionários do Estado-Maior Conjunto e outras publicações de serviços militares (ex., Exército, marinha, força aérea), instruções administrativas, memorandos de tipo diretivo e formulários DoD. Número de acesso: AD0670174 Título: DISTRIBUIÇÃO DE AUTOCORRERAÇÕES RESIDUAIS EM MODOS DE SÉRIE MÉDIA DE TEMPO MORTO AUTOMATICO INTEGRADO. Nota descritiva: Rept. Técnica, Autor corporativo: WISCONSIN UNIV MADISON DEPOSITO DE ESTATÍSTICAS Autor (es) pessoal (s): Box, G. EP Pierce, David A. Data do relatório: APR 1968 Pagination ou contagem de mídia: 45 Resumo: É mostrado que, para uma aproximação próxima, os resíduos de qualquer média móvel ou misturado autoregressivo - processo de média móvel será o mesmo que os de um escolhido adequadamente Processo autorregressivo. A adequação desta aproximação é confirmada por cálculo empírico. Daqui resulta que não é necessário considerar separadamente essas duas classes de processos. Descritores: (ANÁLISE DA SÉRIE DE TEMPO, PROCESSOS ESTATÍSTICOS), MÉTODO DE QUADROS MENOS, APROXIMAÇÃO (MATEMÁTICA), PROCESSOS ESTOCÍSTICOS, ANÁLISE DE VARIÂNCIA, AMOSTRAGEM, DISTRIBUIÇÕES ESTATÍSTICAS, MODELOS MATEMÁTICOS, TABELAS (DADOS) Categorias de assuntos: ESTATÍSTICAS E PROBABILIDADE Declaração de distribuição: APROVADA PARA PUBLIC RELEASE2.1 Modelos em média móvel (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e os termos médios móveis. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor remanescente de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel da ordem q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os signos algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo de MA (1) seja x t 10 w t .7 w t-1. Onde (com o excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra geralmente não fornece um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito dessa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significativos para atrasos após 1. Observe que o ACF de amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria os mesmos recursos amplos. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores não nulos no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos maiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não-zero são A Um gráfico do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2 seguidos de valores não significativos para outros atrasos. Observe que, devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros intervalos de q e autocorrelações 0 para todos os atrasos gt q. Não singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabamos de dar, 1 0.5 será um valor de parâmetro permitido, enquanto que 1 10.5 2 não irá. Invertibilidade de modelos de MA Um modelo de MA é considerado inversível se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0, enquanto nos movemos para trás no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que buscamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são apresentadas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para a invertibilidade é que os coeficientes possuem valores tais que a equação 1- 1 y-. - q e q 0 possui soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Nomeado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) representa atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, use simplesmente o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para fazer a média 10. Padrões de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), MainACF para dados simulados de MA (2) Apêndice: Prova de propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Variance: (texto (texto) (mu wt theta1 w) Texto de 0 texto (wt) (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 . A razão é que, por definição de independência do peso. E (w k w j) 0 para qualquer k j. Além disso, porque o w t tem 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo de MA reversível é aquele que pode ser escrito como um modelo de AR de ordem infinita que converge para que os coeficientes de AR convergem para 0 à medida que nos movemos infinitamente de volta no tempo. Bem, demonstre invertibilidade para o modelo MA (1). Em seguida, substituímos a relação (2) para w t-1 na equação (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) No momento t-2. A equação (2) torna-se então substituímos a relação (4) para w t-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Se continuássemos ( Infinitamente), obteríamos o modelo de AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Note, no entanto, que se 1 1, os coeficientes que multiplicam os atrasos de z aumentarão (infinitamente) de tamanho à medida que avançarmos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo de MA reversível (1). Modelo de ordem infinita MA Na semana 3, veja que um modelo de AR (1) pode ser convertido em um modelo de MA de ordem infinita: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) Este somatório de termos de ruído branco passados é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos que retornam no tempo. Isso é chamado de uma ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Recorde na Semana 1, observamos que um requisito para um AR estacionário (1) é aquele 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Este último passo usa um fato básico sobre séries geométricas que requerem (phi1lt1) caso contrário a série diverge. NavegaçãoDistribuição de Autocorrelações Residuais em Modelos de Série de Tempo Médio Motivo Integrado Autoregressivo Nota: sempre reveja suas referências e faça as correções necessárias antes de usar. Preste atenção aos nomes, capitalização e datas. Journal of the American Statistical Association Descrição: O Journal of the American Statistical Association (JASA) tem sido considerado o principal jornal de ciência estatística. Science Citation Index informou que JASA foi o jornal mais citado nas ciências matemáticas em 1991-2001, com 16.457 citações, mais de 50 mais do que os periódicos mais citados. Os artigos no JASA se concentram em aplicações estatísticas, teoria e métodos em ciências econômicas, sociais, físicas, de engenharia e de saúde e em novos métodos de educação estatística. Cobertura: 1922-2011 (Vol. 18, No. 137 - Vol. 106, No. 496) A parede móvel representa o período de tempo entre a última edição disponível no JSTOR e a edição publicada recentemente de uma revista. As paredes móveis são geralmente representadas em anos. Em raras ocasiões, um editor escolheu ter um muro de mudança zero, então seus problemas atuais estão disponíveis no JSTOR logo após a publicação. Nota: Ao calcular a parede móvel, o ano atual não é contado. Por exemplo, se o ano atual for 2008 e um diário tiver uma parede móvel de 5 anos, estão disponíveis artigos do ano de 2002. Termos relacionados ao muro móvel Paredes fixas: Revistas sem novos volumes sendo adicionados ao arquivo. Absorvido: Revistas combinadas com outro título. Completo: Revistas que já não são publicadas ou que foram combinadas com outro título. Assunto: Ciências Matemáticas, Estatísticas Colecções: Mathematics Statistics Legacy Collection, Coleção de Estatísticas de Matemática, Coleção de Coleção de Idade das Artes da I, Iniciação de Acesso Empresarial Com Fins Lucrativos Não disponível. Muitos modelos estatísticos e, em particular, modelos de séries temporais médias auto-repentinas podem ser considerados Como meio de transformar os dados em ruídos brancos, isto é, para uma seqüência de erros não correlacionada. Se os parâmetros são conhecidos exatamente, esta seqüência aleatória pode ser calculada diretamente das observações quando este cálculo é feito com estimativas substituídas pelos valores dos parâmetros verdadeiros, a sequência resultante é referida como os resíduos, que podem ser considerados como estimativas dos erros . Se o modelo apropriado tiver sido escolhido, haverá zero autocorrelação nos erros. Ao verificar a adequação do ajuste, é lógico estudar a função de autocorrelação da amostra dos resíduos. Para grandes amostras, os resíduos de um modelo corretamente ajustado se assemelham muito de perto aos verdadeiros erros do processo, porém é necessário cuidar da interpretação das correlações em série dos resíduos. É mostrado aqui que as autocorrelações residuais são para uma aproximação próxima representável como uma transformação linear singular das autocorrelações dos erros para que eles possuam uma distribuição normal singular. A falta de permitir isso resulta em uma tendência a ignorar a evidência de falta de ajuste. São elaborados testes de ajuste e verificações de diagnóstico que levam esses fatos em consideração. Miniaturas de página
Comments
Post a Comment